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The main technique employed to characterize the efficiency of water-splitting in photosynthetic preparations in
terms ofmiss and double hit parameters and for the determination of Si (i= 2,3,0) state lifetimes is themeasure-
ment offlash-induced oxygen oscillation pattern on bare platinum(Joliot-type) electrodes.We demonstrate here
that this technique is not innocent. Polarization of the electrode against an Ag/AgCl electrode leads to a time-
dependent formation of hydrogen peroxide by two-electron reduction of dissolved oxygen continuously
supplied by the flow buffer. While the miss and double hit parameters are almost unaffected by H2O2, a time
dependent reduction of S1 to S−1 occurs over a time period of 20min. The S1 reduction can be largely prevented
by adding catalase or by removingO2 from the flow bufferwith N2. Importantly, we demonstrate that even at the
shortest possible polarization times (40 s in our set up) the S2 and S0 decays are significantly accelerated by the
side reaction with H2O2. The removal of hydrogen peroxide leads to unperturbed S2 state data that reveal
three instead of the traditionally reported two phases of decay. In addition, even under the best condi-
tions (catalase + N2; 40 s polarization) about 4% of S−1 state is observed in well dark-adapted samples,
likely indicating limitations of the equal fit approach. This article is part of a Special Issue entitled:
Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Molecular oxygen is important for life on Earth owing to its role in
the glycolysis and citric acid pathways that yield in aerobic organisms
the energy-rich ATP molecules. The generation of the present day
oxygen-rich atmosphere started about 2–3 billion years ago [1]. At
that time, prokaryotic cyanobacteria developed the ability to split
water into molecular oxygen and metabolically bound hydrogen,
using sunlight as energy source [2,3]. Within the molecular structure
of a plant cell, photosynthesis is performed by a specific intracellular
organelle — the chloroplast. Chloroplasts contain a membrane system,
the thylakoid membrane, that comprises lipids, quinones and a very
high content of protein complexes: light harvesting complexes
(LHC's), photosystem II (PSII), cytochrome b6f, photosystem I (PSI)
and the ATP synthase. The unique photosynthetic oxidation of water
into molecular oxygen, protons and electrons is performed by the
Mn4CaO5 cluster in PSII [4–9]. In the late 1960's, Pierre Joliot and his
ine serum albumin; FIOP, flash-
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co-workers built an electrode, now referred to as Joliot-type electrode,
that allowed measuring the oxygen evolution yields per flash induced
in algae by a series of single-turnover light flashes. In this way, he
made the fundamental discovery that photosynthetic oxygen evolution
occurs with a periodicity of four, in which the first maximum is
observed after the third flash (Fig. 1A) [10,11]. This periodicity
disappeared after several cycles, and a small oxygen yield was already
observed after the second flash. This complex pattern of photosynthetic
oxygen evolution was explained by Kok and co-workers within an
elegant model [12]. The revolutionary idea of Kok's model was that it
postulated that each PSII reaction center, which generates in response
to light a positive and a negative charge, is connected to only one unit,
the oxygen-evolving complex (OEC), that first stores four oxidizing
equivalents before it reacts with two water molecules to generate
oxygen [13]. This basic reaction schemewas expressed by five oxidation
states, labeled S0, S1, S2, S3 and S4, that the OEC can attain [12]. Of these
states only the singly oxidized S1 state is dark-stable, while S2 and S3
return to S1 via charge recombinationwithQB

−/2− or via reduction by ty-
rosine D (YD; D2-Tyr160). The S0 state is oxidized to S1 by the long lived
radical form of YD, YD

ox. Oxygen evolution (and substratewater-binding)
occurs spontaneously within 1–2 ms after the highly reactive S4 inter-
mediate is reached, which sets the OEC back into the S0 state. The
damping of the period four oscillation and the small oxygen yield after
the 2ndflashwas explained by Kok et al. by introducing two parameters
that affect the probabilities for the light-induced transitions between
these Si states. The miss parameter (α) gives the probability that an
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Fig. 1. The oxygen evolution pattern of dark-adapted thylakoid sample as a function of
flash at the frequency of 2 Hz (A) and amodern version of the Kok cycle that includes pro-
ton release and substrate water binding [12,15,16,21] (B).
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OEC does not advance to the next higher Si state after a saturating flash
excitation, while the double hit parameter (β) gives the percentage of
centers that undergo two transitions during one flash (Si → Si + 2). A
modern version of the Kok cycle is displayed in Fig. 1B. It includes the
strictly alternating removal of electrons and protons [6,14,15] and two
separate water binding events [16]. The Kok model allows fitting
flash-induced oxygen evolution patterns (FIOPs) with the simplifying
assumption that the miss and double hit parameters are Si state
independent. Several attempts have beenmade to derive their expected
Si state dependence, but no consensus has been reached as yet [17–20].

The Joliot-type electrode consists of a bare platinum cathode, onto
which the PSII sample is placed directly. The Pt-cathode is polarized
by about −750 mV against a Ag/AgCl anode so that it reduces the O2

formed after flash excitation [11]. The induced fast transient is
uncoupled electronically from the constant background signal caused
byO2 dissolved in the flowbuffer and recorded on a personal computer.
The membrane-less cathode not only provides the fast response and
high sensitivity required for obtaining FIOPs, but also exposes PSII
directly to this potential and to possible reaction intermediates generat-
ed during O2 reduction at the platinum surface [11]. One such likely in-
termediate is hydrogen peroxide [22–24]. This is of concern since it is
known that the Mn4CaO5 cluster of the OEC can be reduced by small
water-like reductants such as NH2OH, NH2NH2, H2S and H2O2 to states
below the natural S0 state [25–30]. For example, it was shown that the
addition of 0.03% H2O2 to PSII causes at alkaline pH (pH 8.8) a two-
electron reduction of the S1 state into the S−1 state [30]. When chloro-
plasts were given a single flash of light to form the S2 state prior to the
addition of H2O2, the FIOP (measured 5 min later when all hydrogen
peroxide is gone) displays a high oxygen yield after the fourth flash,
indicating that most of the S2 state was converted in a fast reaction
into the S0 state [30–32]. In addition, PSII may also be able to use H2O2

as substrate for flash-induced molecular oxygen formation [33–37].
In this report, we investigate the effects of in situ (on the bare

Pt-cathode) produced hydrogen peroxide on FIOPs and Si state
lifetimes.

2. Materials and methods

2.1. Sample preparation

Spinach thylakoid samples were isolated from spinach leaves as
described previously [38,39]. After the final isolation step, the thyla-
koid membranes were frozen as small beads in liquid nitrogen and
then stored at−80 °C. Before the FIOP experiments were performed,
the frozen stock solution of thylakoid sample was defrosted in the
dark on ice and diluted to [Chl] = 0.5 mg/ml with measuring buffer
(5 mM MgCl2, 20 mM NaCl, 50 mM MOPS/NaOH at pH = 7.0). The
chlorophyll concentration was calculated according to Porra [40].

2.2. S1YD and S1YD
ox thylakoids

FIOP experiments were performed using either preflashed or non-
preflash thylakoid samples, respectively. S1YD thylakoid samples
contained a high percentage (N80%) of the reduced form of tyrosine D
(YD) due to long-term (several months) dark-storage at −80 °C
[39,41]. S1YD

ox thylakoids with approximately 90% oxidized tyrosine D,
were prepared by giving one saturating flash to an aliquot of the S1YD

sample (pH 7.0, 20 °C), followed by a 5 minute dark-incubation at
room temperature [41].

2.3. Preparation of inactive catalase

Catalase from bovine liver (CAS: 9001-05-2, product number
C9322-5G, 3809 U/mg) was purchased from Sigma-Aldrich and
was either used directly, or when indicated, after inactivation
with the inhibitor NaN3 in the presence of H2O2 [42]. The catalase
powder was dissolved in measuring buffer (50 mM MOPS/NaOH,
20 mM NaCl, 5 mM MgCl2, pH = 7.0) to a final concentration of
40.000 U/ml (10.5 mg/ml). Then, 1 M NaN3 (final concentration)
was added and the mixture was incubated for 10 min. Finally, 1 M
H2O2 (final concentration) was added to the solution, which was
incubated for 4 h at room temperature. The inactivated catalase
was collected and separated from the free inhibitors by centrifuga-
tion in a molecular weight cut-off tube (500 μl, pore size 100.000
kDa; 30–40 min centrifugation at 10.000 ×g). The retained solution
(50 μl) was further purified by repeated washing steps (4–5 times)
with measuring buffer. After the last centrifugation, the protein
concentration was determined using the Bradford assay [43,44].
The residual enzymatic activity was probed by Beers assay
[45,46]. The solution was then frozen and stored at −20 °C until
used.

2.4. Experiments of flash-induced oxygen evolution patterns (FIOPs)

The FIOP experiments of S1YD or S1YD
ox thylakoids were performed

with an unmodulated home-built Joliot-type electrode in measuring
buffer (see above) at 20 °C and pH 7.0 [39,47] in the absence of artificial
electron acceptors. 10 μl aliquots of the thylakoid suspension were
transferred to the surface of bare Pt-cathode in very dim green light,
and the polarization voltage of−750 mVwas switched on 40 s (or lon-
ger, if specified) before exposing the sample to a series of 16 Xe-flashes
(2 Hz; Perkin Elmer, LS-1130-4). A personal computer was used to
trigger the flash lamp and to record the data at a sampling rate of
3600 points/s.



Fig. 2. Original FIOPs obtained after 40 s (A) and 20 min (B) polarization of−750 mV in
the absence of catalase. The data are normalized to the sum of the oxygen yields obtained
by flashes 3–6.
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2.5. Si-state lifetime measurements

The S2, S3 and S0 state lifetimes of both non-pre-flashed (SiYD)
and pre-flashed (SiYD

ox) thylakoid samples were measured with the
Joliot-type oxygen electrode by exciting dark adapted samples with
one (S2), two (S3) or three (S0) pre-flash(es) while they were resting
on the electrode surface. After the desired dark times (td), a flash
train of 16 flashes (2 Hz) was given to PSII samples and the resulting
FIOPs were recorded and deconvoluted into Si-state population as
described below [19,48,49]. The polarization was switched on at
the times indicated (40 s to 20 min) prior to giving the train of 16
flashes. About 16–18 time points were collected per Si state decay.

2.6. Analysis of FIOPs

The oxygen yields of the first 16 flashes of each FIOP were analyzed
within the framework of an extended Kokmodel that was programmed
within an Excel spreadsheet. This model included the reduced S−1 state
of Mn4CaO5 cluster and a damping parameter (d) that accounts for the
loss of active PSII centers during the flash train [19,49,50]. The program
is based on the formulas:

S−1½ �n
S0½ �n
S1½ �n
S2½ �n
S3½ �n

2
66664

3
77775 ¼

α−1 0 0 0 0
γ−1;n α0 0 βn γ30
βn γ0;n α1 0 βn
0 βn γ1;n α2 0
0 0 βn γ2;n α3

2
66664

3
77775 �

S−1½ �n−1
S0½ �n−1
S1½ �n−1
S2½ �n−1
S3½ �n−1

2
66664

3
77775 � d ð1Þ

and

Yfit
n ¼ 1−α3ð Þ � S3½ �n−1 þ βn � S2½ �n−1: ð2Þ

Where [Si]n−1 and [Si]n are the Si state populations before and
after the nth

flash, αi is the Si state dependent miss probability, βn

is the flash number dependent double hit probability (β can be
higher on the first flash under certain circumstances), γ is the single
hit probability (e.g. γ1,n = 1−α1−βn), d is the damping parameter
(see above) and Yn

fit is the oxygen yield generated after the nth
flash.

All fits presented in this report are based on Si state independent
(equal) miss and double hit parameters, since these are most com-
monly used and we found our conclusions to be invariant towards
various possible Si state dependent approaches. The fits were
performed within a spreadsheet program (Microsoft Excel) using
the ‘GRG nonlinear’ method of the ‘Solver’ subroutine of Excel to
minimize the deviation dyn

2 between the experimental and calculat-
ed oxygen yields by varying a specified set of parameters:

dy2n ¼
XF
n¼1

Yexp
n −Yfit

n �
XF
n¼1

Yexp
n =

XF
n¼1

Yfit
n

 !" #2
: ð4Þ

Here, Ynexp is the experimental oxygen yield of the nth
flash and F

stands for the number of analyzed flashes (or independent data points).
The Si-state populations were normalized according to Eq. (5), and the
fit quality was determined by Eq. (6).

X3
i¼−1

Si½ � ¼ 1 ð5Þ

and

FQ ¼ dy2n
F−P

ð6Þ

where, P is the number of free parameter used in the fit procedure. A
systematic fit approach was used in which the miss and double hit
parameters were determined first from the 2 Hz FIOP of S1YD
ox

thylakoids and then kept constant for the subsequent Si-state lifetime
analysis.

2.7. Rate constant and half-time calculations

The rates of S2 and S3 state decay were determined by fitting the
time dependents of the S2 or S3 state population by the sum of two
first order decay reactions, where the amplitude of the fast phase
reflects the amount of YD (Eq. (7)). In some cases, also fits with three
phases were tested.

Si tdð Þ ¼ Ai;fast � exp
−ki;fast�td þ Ai;slow � exp

−ki;slow�td ð7Þ

where, ki,fast and ki,slow are the rate constants, and Ai,fast and Ai,slow are
the amplitudes of the fast and slow phase of decay (Ai,fast + Ai,slow= 1).

In contrast, the S0 oxidation to S1 was described well by a mono
exponential reaction: S0YD

ox → S1YD (Eq. (8)).

S0 tdð Þ ¼ S0Y
ox
D Initialð Þ � exp−K01�td þ C ð8Þ

where, C is a constant that reflects the S0YD fraction.

3. Results and discussion

3.1. Flash-induced oxygen evolution pattern (FIOPs)

Fig. 2A shows a flash-induced oscillation pattern (FIOP) of spinach
thylakoids obtained after 40 s polarization of the electrode, which in
our set up is the minimum time required for achieving a stable polariza-
tion at−750mV against the Ag/AgCl anode. Under this condition, a deep
oscillation was observed with maxima at the 3rd, 7th and 11th flash,
and low oxygen yields after the 5th and 6th flashes. Extension of the

image of Fig.�2


Table 1
Fit parameter for FIOPs of spinach thylakoids obtained after various polarization times and experimental conditions.

Vpolar, mV −750 −600

tpolar 40 s 20 min 20 min 20 min 20 min 40 s 20 min

Protein addition No No Catalase No Catalase No No
Buffer saturated with Air Air Air N2 N2 Air Air
Miss (α) 9.5 9.2 10.9 9.7 9.3 9.0 9.8
Double hit (β) 1.1 1.9 1.0 1.2 1.2 1.2 2.3
Damping (d) 98.0 98.8 98.1 97.7 97.8 98.6 98.9
S1-state 94.0 81.0 91.1 88.8 91.4 95.7 85.1
S0-state 2.1 1.9 2.5 2.8 2.2 0.0 0.0
S−1-state 3.9 17.2 6.4 8.5 6.5 4.3 14.9
FQ (*10^6) 7.3 3.6 9.4 5.5 4.7 4.2 8.1
Oxygen yield (%) 100 57 86 84 92 100 63
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polarization time decreased the maximum at the 3rd flash and led to a
corresponding increase of the yields after the 5th and 6th flashes. This
is seen well in Fig. 1B, which displays a pattern obtained from an aliquot
of the same thylakoid preparation after 20min polarization at−750mV.
Analysis of these two patterns within the Kok model yields very similar
values for themiss and double hit parameters for both data sets, but indi-
cates a significant increase in the S−1 population at the expense of the S1
state population (Table 1).We note that this effect is largely independent
of the polarization voltage in the typical range of−600mV to−750mV
(Table 1). Only a small and constant S0 population is found. This suggests
that the S1 state is reduced to the S−1 state during the polarization time
by a two electron reductant. Alternatively, a two-electron reductant
could accumulate that then reduces the S2 state into S0 during the dark-
time between the first and second flashes. On the basis of previous data
in the literature, and since no reductants were added, H2O2, formed at
the electrode surface by partial reduction of O2, appears to be the most
likely two-electron reductant that can account for our observation.

To further characterize the S−1 state formation and for identifying
the two electron reductant we repeated the experiment at various
polarization timeswith andwithout the addition of catalase, inactivated
catalase or BSA. Fig. 3 shows that the increase of the S−1 population in
thylakoids without additions is nearly linear with the time of polariza-
tion, demonstrating that the reductant is indeed formed during the
polarization time. The addition of inactivated catalase or BSA had
neither an effect on the extent nor on the time course and of S−1 state
formation. In contrast, the addition of active catalase almost completely
suppressed the reduction of S1 to S−1. The fit results in Table 1 show
Fig. 3. Percentage of S−1 population as a function of polarization time (sec) in spinach
S1YD

ox thylakoids with (red line and full circles) or without (blue line and open squares)
the addition of catalase (10.000 U/ml = 2.63 mg/ml). Triangles and open circles indicate
the S−1 population generated in the presence of BSA (2.63 mg/ml) or inactivated catalase
(2.63 mg/ml), respectively. All experiments were repeated 3 times and fitted individually
(error bars give the standard deviations). Other conditions: 20 °C, pH7.0, [Chl]=0.5 mg/ml,
−750 mV (from 40 s to 20 min), tsed = 3 min.
that purging the flow buffer of the Joliot-electrode with N2, which
strongly reduces the dissolved O2 concentration, had a similar effect as
adding catalase. Therefore, our data conclusively identify H2O2, formed
by the reduction of dissolved oxygen from the flow buffer, as reductant
that reduces the S1 state to the S−1 state during prolonged polarization
times. Table 1 also shows that at long polarization times, especially in
the absence of catalase and in the presence of O2, a significant decrease
in the total oxygen yield was observed.

It is interesting to note that the linear extrapolation of all data sets in
Fig. 3 to zero polarization time indicates that about 4% of the PSII centers
attain the S−1 state in dark adapted spinach thylakoids. Future studies
have to show, whether this is an artifact of the equal miss fit approach,
as suggested in a previous study using thylakoids isolated from
Fig. 4. S2 state decaymeasurements in pre-flashed spinach thylakoids (S1YD
ox). Both panels

show the change in Si state populations (square's, S2; triangles, S1; inverted triangles, S0;
circles, S−1) as function of dark-time between the S2 state generating flash and the
subsequent flash train. A: no protein additions and air-saturated flow buffer, B: with
added catalase ([catalase] = 10.000 U/ml) and nitrogen saturated flow buffer. A
constant polarization time of 40 s prior to the flash train was used. Other conditions:
[Chl] = 0.5 mg/ml, 20 °C, pH 7.0, −750 mV, tsed = 3 min.

image of Fig.�3
image of Fig.�4


Table 2
Bi- and mono-exponential fits (Eqs. 7 and 8) of Si state decays in pre-flashed (S1YD

ox) spinach thylakoids in presence and absence of catalase in the sample and of O2 in the flow buffer at
20 °C and pH 7.0. Normalized amplitude, rate constants (k) and half-life times (t1/2) are specified.

Spinach thylakoid membrane

No additions, air-saturated buffer Catalase, N2-saturated buffer

Fast phase Slow phase Fast phase Slow phase

Ai,f, % ki,f, s−1 t1/2, s Ai,s, % ki,s, s−1 t1/2, s Ai,f, % ki,f, s−1 t1/2(s) Ai,s, % ki,s, s−1 t1/2(s)

S2YD
ox 14 0.236 2.9 86 0.013 53 14 0.227 3.1 86 0.010 68

S3YD
ox 10 0.311 2.2 90 0.012 58 0 – – 100 0.012 58

S0YD
ox 100 0.00102 680 100 0.00079 880

Table 3
Three component fits of S2 state decays in S1YD and S1YD

ox thylakoids in the presence and absence of catalase in the sample and of O2 in the flow buffer at 20 °C and pH 7.0. Normalized
amplitude, rate constants (k) and half-life times (t1/2) are specified.

Fast phase Slow phase Very slow phase

A2,f, % k2,f, s−1 t1/2(s) A2,s, % k2,s, s−1 t1/2(s) A2,vs, % k2,vs, s−1 t1/2(s)

S2YD
ox 6 0.187 3.7 38 0.0268 26 56 0.0066 105

S2YD 45 0.208 3.3 25 0.0287 24 30 0.0066 105
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Thermosynechococcus elongatus [19], or whether there exists a real S−1

state population under these conditions.

3.2. Si-state decay

It is known that the S2 state is especially reactive towards exogenous
reductants [41,51]. It is therefore possible that S2 lifetime measure-
ments are affected by the formation of H2O2 on the electrode surface.
In the S2 state lifetime experiments one flash is given to advance the
dark-adapted samples to the S2 state. After various dark times then a
train of 16flasheswas given to probe the Si state populations. The polar-
ization voltage of−750mVwas turned on always 40 s prior to the first
flash of the detecting flash train (this maybe before or after the S2
generating flash). The transient rise of the S0 population in Fig. 4A
shows that even at the shortest possible polarization time (40 s) a sig-
nificant amount of two-electron reduction of S2 to S0 takes place. The
addition of catalase abolishes this effect (Fig. 4B), confirming that this
is not caused by a so far unknown PSII-intrinsic process, but by electro-
chemically produced H2O2.

Similar, but less pronounced effects were observed for the S3 → S2
and S0 → S1 state decays. The rate constants obtained by mono- (S0)
or bi- (S2, S3) exponential fits of these data are given in Table 2. The
half-life times of the fast S2 and S3 decays (reduction by YD) and the
slow S3 decay (recombination with acceptor side electrons) are almost
invariant to catalase addition. This is expected, since the YD reaction is
fast as compared to the H2O2 reduction of S2/S3, and the S3 state is
known to react especially slowly with exogenous reductants such as
NH2OH or NH2NH2 [51]. In contrast, the half-life times of both the
slow S2 and the S0 states are about 1.3 times longer in the absence of
H2O2 (presence of catalase). This trend is consistent with our proposal,
since catalase addition removes a competing pathway for Si state
decay. In the case of S0, the formation of a small percentage (up to 5%)
of both the S−2 and of S2 state population was observed in experiments
when catalase was absent. This confirms earlier suggestions that the S0
state can be oxidized to S2 by H2O2 [31] or be reduced by reductants to
S−2 [51], i.e. that H2O2 can react with theMn4CaO5 cluster as oxidant or
reductant.

While the two phase fit describes the data of the S2 state decay very
well in the absence of catalase (red line in Fig. 4A), a systematic devia-
tion is observed if H2O2 was removed by catalase (dashed line in
Fig. 4B). Table 3 and Fig. 4B (red line) therefore present a three-phase
fit. The presence of the three distinguishable phases was confirmed by
S2 lifetime measurements with S1YD thylakoids. These data were fit in-
dependently and gave, despite the expectedly different amplitudes for
the three phases of the decay, basically the same three rate constants
as found above for the S2 state decay in S1YD

ox thylakoids. In contrast,
for the S3 state in all cases one or two phases (fast, YD; and slow) were
sufficient for describing its decay to S2. Further studies will be required
for a firm assign of the slow and very slow phases in the S2 state decay
to specific intrinsic electron donors; an attractive possibility would be
QB
− and an electron donor of the protective branch (cytochrome b559,

carotenoid, ChlZ), respectively. Alternatively, QBH2 may account for the
very slow decay.

Similar, yet not identical, observations were reported by
Tyystjarvi and coworkers using intact thylakoids isolated from
pumpkin [52]. They observed two electron reduction pathways
for the S2QB and S3QB decay in intact thylakoids, which were absent
in BBY preparations of the same organism, or after the addition of
exogenous electron acceptors. It was suggested that H2O2 produced
by thylakoids in the dark may to some extent act as donor in
the two-electron reduction of the S2QB thylakoids, but not for
S3QB thylakoids.

4. Conclusions

For a reliable determination of (i) the Si state distribution in dark-
adapted PSII samples and (ii) the S0 and S2 life-times care must be
taken to avoid electrochemical production of H2O2 at the surface of
the Joliot type electrode. In the absence of such effects we observe
three distinguishable phases in the S2 state decay, and a residual S−1

state population in dark-adapted spinach thylakoids.
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